Molecular basis of fatty acid taste in Drosophila
نویسندگان
چکیده
Behavioral studies have established that Drosophila appetitive taste responses towards fatty acids are mediated by sweet sensing Gustatory Receptor Neurons (GRNs). Here we show that sweet GRN activation requires the function of the Ionotropic Receptor genes IR25a, IR76b and IR56d. The former two IR genes are expressed in several neurons per sensillum, while IR56d expression is restricted to sweet GRNs. Importantly, loss of appetitive behavioral responses to fatty acids in IR25a and IR76b mutant flies can be completely rescued by expression of respective transgenes in sweet GRNs. Interestingly, appetitive behavioral responses of wild type flies to hexanoic acid reach a plateau at ~1%, but decrease with higher concentration, a property mediated through IR25a/IR76b independent activation of bitter GRNs. With our previous report on sour taste, our studies suggest that IR-based receptors mediate different taste qualities through cell-type specific IR subunits.
منابع مشابه
Drosophila Fatty Acid Taste Signals through the PLC Pathway in Sugar-Sensing Neurons
Taste is the primary sensory system for detecting food quality and palatability. Drosophila detects five distinct taste modalities that include sweet, bitter, salt, water, and the taste of carbonation. Of these, sweet-sensing neurons appear to have utility for the detection of nutritionally rich food while bitter-sensing neurons signal toxicity and confer repulsion. Growing evidence in mammals ...
متن کاملOdorant-Binding Proteins OBP57d and OBP57e Affect Taste Perception and Host-Plant Preference in Drosophila sechellia
Despite its morphological similarity to the other species in the Drosophila melanogaster species complex, D. sechellia has evolved distinct physiological and behavioral adaptations to its host plant Morinda citrifolia, commonly known as Tahitian Noni. The odor of the ripe fruit of M. citrifolia originates from hexanoic and octanoic acid. D. sechellia is attracted to these two fatty acids, where...
متن کاملDrosophila Gr64e mediates fatty acid sensing via the phospholipase C pathway
Animals use taste to sample and ingest essential nutrients for survival. Free fatty acids (FAs) are energy-rich nutrients that contribute to various cellular functions. Recent evidence suggests FAs are detected through the gustatory system to promote feeding. In Drosophila, phospholipase C (PLC) signaling in sweet-sensing cells is required for FA detection but other signaling molecules are unkn...
متن کاملA subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste
Fat represents a calorically potent food source that yields approximately twice the amount of energy as carbohydrates or proteins per unit of mass. The highly palatable taste of free fatty acids (FAs), one of the building blocks of fat, promotes food consumption, activates reward circuitry, and is thought to contribute to hedonic feeding underlying many metabolism-related disorders. Despite a r...
متن کاملCD36 may determine our desire for dietary fats.
There is a strong link between high fat intake and obesity. In addition to its high caloric density, dietary fat has a hyperphagic effect, in part as a result of its high palatability. The recent identification by Laugerette et al. of CD36 as a taste receptor for fatty acids provides insight into the molecular basis of our preference for fat (see the related article beginning on page 3177). As ...
متن کامل